

AQA Computer Science A-Level
4.3.3 Reverse Polish

Advanced Notes

www.pmt.education

Specification:

4.3.3.1 Reverse Polish – infix transformations

Be able to convert simple expressions in infix form to Reverse Polish
notation (RPN) form and vice versa. Be aware of why and where it is used.
Eliminates need for brackets in sub-expressions. Expressions in a form
suitable for evaluation using a stack. Used in interpreters based on a stack
for example Postscript and bytecode.

www.pmt.education

Infix Notation
Humans prefer to use ​ in-fix​ order of notation. This means that the
operand ​ ​is ​either side ​ of the ​opcode​. However, longer equations
can cause confusion over the ​order of execution​.

Example 1:

3 and 5 are the ​operand ​ and + is the​ opcode ​. The answer is 8.

Example 2:

These expressions can either use brackets or​ BODMAS​ to
alleviate the confusion.
According to BODMAS, the following equation is produced.

www.pmt.education

However, brackets could be added to produce an equation with a different answer.

Reverse Polish Notation
Reverse Polish Notation ​ (RPN) is a ​postfix ​way of ​writing expressions ​.
This​ eliminates​ the need for ​brackets​ and any confusion over the ​order
of execution​. Rather than the opcode going in ​between​ the operand, a
postfix expression writes the opcode ​after​ the operand. When the
opcode​ has ​both​ pieces of ​operand immediately preceding ​it, the
operation proceeds.

Example 1:
This is an​ infix​ equation.

This is its​ postfix ​equivalent.

They both give the answer 8.

www.pmt.education

Example 2A:
This is an​ infix​ equation. Its answer is 11.

This is its ​postfix​ equivalent.

Proof

The / sign has two pieces of ​operand immediately before​ it (6 and 3).

 It performs the operation 6 / 3, which equals 2.

www.pmt.education

Now the ​postfix​ expression reads 9 2 +. The 9 and the 2 are immediately before the
plus sign.

They are added together to make 11, the same as its​ infix​ equivalent.

Example 2B:

This is an ​infix​ equation. Its answer is 5.

This is its ​postfix​ equivalent.

www.pmt.education

Proof
The + has two pieces of​ operand preceding it ​ (9 and 6).

They add together to make 15.

The new expression is 15 3 /, which is the same as 15 / 3, hence the answer is 5. This
is the same answer as given by the infix equation (9 + 6) / 3.

www.pmt.education

Converting from Infix to Postfix

Infix expressions can be converted into postfix by the
postorder traversal ​ of an ​expression tree​. Simpler ones
can be done by observation.

Example 1:
The following expression needs to be converted into its
postfix​ equivalent.

The first operator is selected.

The minus sign is our first ​opcode ​. Because of the brackets
around the operation, the two pieces of ​operand ​are 12 and
6. 12 - 6 is the same as 12 6 - in RPN, so this part of the
equation can be replaced.

www.pmt.education

.

The next ​operator ​ can be looked at.

It is a divisor. The two pieces of operand surrounding it is 3 and the result of y 6 -.

www.pmt.education

This may seem confusing, but remember, y 6 - can be evaluated (with a value of y), so
it can be treated as a single term.

The next ​operator ​ is observed.

www.pmt.education

The ​operand​ surrounding the multiplication sign is the result of the ​postfix​ expression ((y
6 -) 3 /) and the result of the ​infix​ expression (x + 4). Again, this is less complicated than
it looks if each operand is taken as one term.

It would be tempting to say that we have found the ​postfix​ equivalent - there isn’t an
operator ​ to the right of the multiplication symbol. However, if we look back at the original
equation, we can see that the + sign needs to be dealt with. Original equation:

Current equation:

www.pmt.education

The ​operand​ surrounding the plus sign is x and 4.

Now all the opcode has been considered, the ​ brackets can be removed ​ as they are
superfluous.

Stacks

Stacks​ can be used to ​evaluate postfix equations ​. The
algorithm ​ goes along the
array - ​operand ​ is ​pushed
onto the​ stack​, whilst ​opcode
causes ​two items​ to be
popped ​ off the ​stack​ with the
result​ of the operation
pushed​ onto the ​stack​.

www.pmt.education

Example 1:
The following RPN expression needs to be evaluated:

The ​leftmost​ item is selected first.

5 is the​ operand​ so it is ​pushed ​ onto the ​stack​.

www.pmt.education

The next item is looked at.

3 is also ​operand​ so it is ​pushed ​ onto the ​stack​.

www.pmt.education

The next item is investigated.

www.pmt.education

The minus sign is an ​operator ​. Therefore two items are ​popped ​ off the ​stack​ - they will
be the ​operand​ for this operation. First pop:

The 3 has been labelled as operand 2, this will help show the order of operation.
Second pop:

Now we have the opcode and the operand, an equation can be evaluated.

www.pmt.education

The​ result​ is then ​pushed​ onto the ​stack​.

Now, the next item is looked at.

www.pmt.education

4 is the ​operand​ so it is ​pushed ​ onto the ​stack​.

The next item is observed.

www.pmt.education

The addition sign is an ​operator ​, so​ two​ items are ​popped ​ off the ​stack​. First pop:

Second pop:

www.pmt.education

The operation can now be performed.

www.pmt.education

The ​answer ​ is ​pushed ​ onto the ​stack​.

The next item is considered. There are no more items to consider.

www.pmt.education

The ​top of the stack​ is returned as the answer. The algorithm ​terminates​.

www.pmt.education

Example 2:
The following ​postfix​ expression needs to be evaluated.

The​ leftmost​ item is selected first.

3 is the​ operand​ so it is ​pushed ​ onto the ​stack​.

The next item is considered.

www.pmt.education

7 is the ​operand​ so it is ​pushed ​ onto the ​stack​.

The next item is considered.

www.pmt.education

The plus is ​opcode ​. Hence,​ two​ items are ​popped ​ off the ​stack​. First pop.

Second pop.

www.pmt.education

The operation can now be performed.

The​ result​ of this calculation is then ​stored​ in the ​stack​.

www.pmt.education

The next item is considered.

The 2 is the ​operand ​ so it is ​pushed ​ onto the ​stack​.

www.pmt.education

The next item is looked at.

The division sign is an ​operator ​ so ​two​ items on the ​stack​ are ​popped​ off. First pop.

www.pmt.education

Second pop.

The equation can be evaluated.

www.pmt.education

The ​result​ is ​pushed​ onto the ​stack​.

The next item is observed.

www.pmt.education

5 is the ​operand​ so it is ​pushed ​ onto the ​stack​.

The next item can be considered.

www.pmt.education

The multiplication is an ​operator ​ so ​two​ items need to be ​popped ​ off the​ stack​.

Second pop.

www.pmt.education

The equation can be evaluated.

The ​result​ can be stored on the ​stack​.

www.pmt.education

The next item is considered.

6 is the ​operand​ so it is ​pushed ​ onto the ​stack​.

www.pmt.education

The next item is considered.

8 is the ​operand​ so it is ​pushed ​ onto the ​stack​.

www.pmt.education

The next item can be considered.

The minus sign is the ​opcode​, so 2 items are ​popped ​ from the ​stack​. First pop.

www.pmt.education

Second pop.

The equation can be completed.

www.pmt.education

The ​result​ is stored on the ​stack​.

The next item can be considered.

www.pmt.education

2 is​ operand ​ so it is​ pushed ​onto the ​stack​.

The next item is considered.

www.pmt.education

The multiplication sign is an ​operator ​ so ​two​ items are ​popped ​ off the ​stack​. First pop.

Second pop.

www.pmt.education

The expression can be evaluated.

The ​result​ is stored on the ​stack​.

www.pmt.education

The next item can be considered.

The minus sign is ​opcode​ so ​two ​items are ​popped ​ off the​ stack​. First pop.

www.pmt.education

Second pop.

The expression can be derived.

www.pmt.education

The ​result​ is stored on the ​stack​.

The next item is observed. There are no more items. The ​ answer​ is the​ top of the stack​.

www.pmt.education

Pseudocode
Stack1 ← Stack
RPN ← Array
Op2 ← Single
Op1 ← Single
Result ← Single
For i = 0 to RPN.count - 1

If RPN(i) = operand
Stack1.push(RPN(i))

ElseIf RPN(i) = opcode
Op2 = Stack1.pop
Op1 = Stack1.pop
Result = Perform(RPN(i), Op1, Op2)
Stack1.push(Result)

End If
End For
Print Stack1.peek

www.pmt.education

RPN Uses
As seen above, RPN can be ​executed ​ on a ​stack​. Due to this, RPN is ideal for
interpreters ​ which are based on a stack, e.g. ​Bytecode ​and ​PostScript​. For more
information, follow the links listed in the extra resources section.

www.pmt.education

